Code No.: 15136 S (D)

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. V-Semester Supplementary Examinations, July-2022

Numerical Methods (OE-III)

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

Q. No.	Stem of the question	M	L	CO	PO
1.	State Intermediate value property.	2	1	1	1,12
2.	Find the second approximation root using bisection method to the equation $x \log_{10} x = 1.2$	2	1	1	1,12
3.	Write the difference between direct and iterative method of solving simultaneous linear equations.	2	1	2	1,12
4.	Define well conditioned, ill-conditioned system of equations.	2	1	2	1,12
5.	State Newton's forward and backward interpolation formulae.	2	1	3	1,12
6.	Write Lagrange's interpolation formula.	2	1	3	1,12
7.	Write Gauss forward & backward difference formula.	2	1	4	1,12
8.	Write Bessel's Formula.	2	1	4	1,1
9.	Using Euler's method, solve for y at $x = 0.2$ from $\frac{dy}{dx} = 1 - 2xy$, $y(0) = 0$ taking $h = 0.1$.	2	2	5	1,1
10.	Write the Taylor's series solution of $\frac{dy}{dx} = xy$, $y(0) = 1$.	2	2	5	1,1
	Part-B $(5 \times 8 = 40 \text{ Marks})$	an			
11. a)	Find the real root of the equation $\cos x - xe^x = 0$ using Newton-Raphson method correct to four decimal places.	4	2	1	1,2
b)	Find the root of the equation $3x = \cos x + 1$ using Regula-Falsi method correct to four decimal places.	4	3	1	1,2
12. a)	Solve the equations $3x + 2y + 7z = 4$, $2x + 3y + z = 5$, $3x + 4y + z = 7$ by Factorization method.	4	3	2	1,2
b)	Apply Gauss-Seidal iteration method to Solve the equations $20x + y - 2z = 17$, $3x + 20y - z = -18$, $2x - 3y + 20z = 25$.	4	3	2	1,2
13. a)	Find f (43) from the following data using Newton's interpolation formula:	4	2	3	1,2
	x 40 50 60 70 80 90 f(x) 184 204 226 250 276 304				

b)	If y(1)	= -3	, y(3)	= 9, y	(4) =	30, y	(6) =	132, f	ind the N	Newton's	4	3	3	1,2
	divided difference interpolation polynomial.								3,					
14. a)	Find f (32) from the following data using Gauss forward difference								4	3	4	1,2		
	formula:									3610				
	x	20	25	30	35	40	1	15						
	f(x)	354	332	291	260	23	1 2	204						
b)	Apply Stirling's formula to find f (27.5) from the table:										4	3	4	1,2
	x	25	26	tere	27	28		29	30					
	f(x)	4.000	3.8	46	3.704	3.5		3.448			17			
15. a)	Find by Taylor's series method, the value of y at $x = 0.1$ and 0.2 to									d 0.2 to	4	3	5	1,2
	four places of decimals from $\frac{dy}{dx} = y^2 + x$, $y(0) = 1$.													
b)	Using Runge – Kutta method of fourth order, solve $\frac{dy}{dx} = \frac{y-x}{y+x}$ with								4	3	5	1,2		
	y(0) = 1 at $x = 0.2$ in steps of 0.1.													
16. a)	Use Newton-Raphson method to derive the formula to find $\sqrt[k]{N}$, $N > 0$, k is a positive integer.								4	2	1	1,2		
b)	Solve $2x + 2y + z = 12$, $3x + 2y + 2z = 8$, $5x + 10y - 8z = 10$ by Gauss elimination method.								3z = 10	4	2	2	1,2	
17.	Answer any two of the following:									stantin in				
a)	Using Lagrange's interpolation formula, find $y(3)$, given that $y(1) = \begin{pmatrix} 4 & 2 & 3 & 1,2 \\ -26, y(2) = 12, y(4) = 256, y(6) = 844. \end{pmatrix}$											1,2		
b)	Interpolate by means of Gauss backward difference formula, the								4	3	4	1,2		
	population of a town for the year 1974, given that													
	Year		193	9 19	49 1	959	1969	1979	1989					
	Popula (in tho		12	15	20)	27	39	52	ed to Reserv				
c)	Find by Modified Euler's method, the value of y at $x = 0.2$ and 0.4 to 4 3 four places of decimals from $\frac{dy}{dx} = y + e^x$, $y(0) = 0$.									5	1,2			

M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

i)	Blooms Taxonomy Level – 1	20%
ii)	Blooms Taxonomy Level – 2	30%
iii)	Blooms Taxonomy Level – 3 & 4	50%

